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The two-sided lid-driven cavity: experiments on
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The incompressible fluid flow in a rectangular container driven by two facing sidewalls
which move steadily in anti-parallel directions is investigated experimentally for
Reynolds numbers up to 1200. The moving sidewalls are realized by two rotating
cylinders of large radii tightly closing the cavity. The distance between the moving
walls relative to the height of the cavity (aspect ratio) is Γ = 1.96. Laser-Doppler and
hot-film techniques are employed to measure steady and time-dependent vortex flows.
Beyond a first threshold robust, steady, three-dimensional cells bifurcate supercritically
out of the basic flow state. Through a further instability the cellular flow becomes
unstable to oscillations in the form of standing waves with the same wavelength as the
underlying cellular flow. If both sidewalls move with the same velocity (symmetrical
driving), the oscillatory instability is found to be tricritical. The dependence on
two sidewall Reynolds numbers of the ranges of existence of steady and oscillatory
cellular flows is explored. Flow symmetries and quantitative velocity measurements
are presented for representative cases.

1. Introduction
Vortex flows in closed systems are of fundamental interest and of practical import-

ance. To study their general properties, isothermal flows are frequently considered in
the simplified model of a lid-driven cavity (Koseff & Street 1984a). This model is
related to several technical applications such as short-dwell coating (Aidun & Tri-
antafillopoulos 1997; Triantafillopoulos & Aidun 1990), continuous drying (Alleborn,
Raszillier & Durst 1999), or the flow in gate slots of water-reservoir dam-gates whose
performance depends on the slot geometry (Vischer & Hager 1998). The lid-driven
cavity has also been studied, with side heating, in the context of transport processes in
lakes (Stefanovic & Stefan 2000). In addition to these applications, the model has be-
come a standard benchmark problem for two- and three-dimensional Navier–Stokes
solvers (Deville, Lê & Morchoisne 1992).

The lid-driven cavity is a rectangular container which is typically filled with a
Newtonian liquid. While one sidewall moves with a constant velocity tangentially
to itself and parallel to the edges of the container, the remaining sidewalls are at
rest. The present experimental study is aimed at extending the range of phenomena
accessible by this classical configuration with a single moving lid. To that end we use
an apparatus that allows the independent motion of two opposing sidewalls. This
configuration enables the realization of different types of vortex flows and, hence,
other types of flow instabilities not observable in the single-lid-driven cavity.

Most previous investigations have been carried out for the one-sided lid-driven
cavity with square cross-section for which the width d equals the height h. Then the
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cross-sectional aspect ratio is unity, Γ = d/h = 1. The spanwise aspect ratio Λ = l/h,
defined as the spanwise length l to the height h, was either Λ = 1 or Λ = 3.

The first thorough theoretical and numerical investigation of the one-sided lid-
driven cavity problem is due to Burggraf (1966). Around the the same time, Pan &
Acrivos (1967) numerically investigated the structure of the primary flow for Re = 0
and compared their experimental results with the theoretical ones of Burggraf (1966)
for Reynolds numbers up to Re = Uh/ν = 4000, where U is the velocity of the
lid and ν the kinematic viscosity. Koseff & Street (1984a, b, c), Koseff et al. (1983),
Freitas et al. (1985), and Prasad & Koseff (1989) carried out a series of numerical and
experimental investigations for Reynolds numbers in the range 1000 6 Re 6 10 000.
The flow was found to be three-dimensional and it essentially consisted of a single
main vortex, superimposed with time-dependent three-dimensional secondary eddies,
if the Reynolds number is sufficiently high. Rhee, Koseff & Street (1984) visualized
the flow for Re > 2000 and reported the existence of unsteady Taylor–Görtler-like
vortices in the region close to the downstream corner eddy. Endwall effects have been
considered by Koseff & Street (1984b) and Prasad & Koseff (1989). The influence of
the finite container length on the flow was assessed by varying the spanwise aspect
ratio in the range Λ 6 3.

More recently, Aidun, Triantafillopoulos & Benson (1991) studied a one-sided lid-
driven square-cavity (Γ = 1) with spanwise aspect ratio Λ = 3 for 100 6 Re 6 2000.
Their apparatus allowed a small amount of through-flow to enter the cavity from
the rigid corner upstream of the moving wall and to leave the cavity through the
downstream corner of the moving lid. As the first instability of the primary flow they
found small-amplitude time-periodic waves at Re ≈ 825. These waves appeared as
spiral-shaped vortices originating from the midplane of the cavity (perpendicular to
the primary-vortex axis) and travelling symmetrically outward towards the endwalls.
Furthermore, they discovered stationary three-dimensional vortex flows which filled
the whole cavity after the Reynolds number is suddenly decreased from Re ≈ 2000 to
Re 6 500. In a follow-up, the onset of oscillatory flow in the same apparatus has been
investigated by Benson & Aidun (1992) by means of a wall-mounted hot-film probe.
For Re & 900 the authors confirmed the existence of the time-periodic state found by
Aidun et al. (1991). A further increase of the Reynolds number led to quasi-periodic
and chaotic flows. A recent review of the one-sided lid-driven cavity problem has
been given by Shankar & Deshpande (2000).

To clarify the nature of the first instability a number of linear stability analyses
have been carried out using periodic boundary conditions in the spanwise direction.
Ramanan & Homsy (1994) and Ding & Kawahara (1998, 1999) numerically investi-
gated the stability of the two-dimensional basic flow in the one-sided lid-driven cavity
in the limit Λ → ∞. While these authors missed the true critical Reynolds number,
Albensoeder, Kuhlmann & Rath (2001b) recently calculated the correct linear stab-
ility boundary. They showed that the first instability in the square cavity occurs at
Rec = 786, a result which they also confirmed experimentally in a modification of the
setup used by Kuhlmann, Wanschura & Rath (1997). It was argued that the large
critical wavenumber of the critical mode kc = 15.4 (in units of the inverse cavity
height) was the reason why previous investigations missed the linear-stability bound-
ary, and that the small spanwise aspect ratio Λ = 3 used by Aidun et al. (1991) and
Benson & Aidun (1992) prevented them from observing the first, steady instability in
their experiment. Moreover, Albensoeder et al. (2001b) considered the whole range
of aspect ratios Γ and found four different types of instability which are all caused
by centrifugal effects.
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The first investigation of the nonlinear flow in two-sided lid-driven cavities in
which both walls move in opposite directions is due to Kuhlmann et al. (1997). They
experimentally studied different two- and three-dimensional flows in an apparatus
where the separation between the two moving walls was approximately twice the
height of the cavity (Γ = 1.96). The spanwise aspect ratio was Λ = 6.55. Their
experiments were supplemented by linear-stability analyses for varying aspect ratio
Γ and for Λ → ∞. It was found numerically that the two-dimensional flows are
not unique. This result was confirmed by the experimental observation of hysteresis
between two different quasi-two-dimensional cavity flows. While one flow state consists
of two well-separated vortices, the vortices are partly merged in the other state.
The linear-stability analysis showed that the merged-vortex flow becomes three-
dimensional through the elliptical instability mechanism proposed by Pierrehumbert
(1986) and Bayly (1986). This instability is caused by the large strain rates associated
with the high eccentricity of the closed streamlines (Kuhlmann et al. 1997; see also
Kuhlmann, Wanschura & Rath 1998). The numerically predicted instability was
confirmed by experiments carried out in parallel. They revealed the supercritical
flow pattern as a row of steady rectangular cells within each of which the flow is
three-dimensional.

Albensoeder, Kuhlmann & Rath (2001a) extended the results of Kuhlmann et al.
(1997) on the non-uniqueness of the two-dimensional flows in the two-sided lid-driven
cavity. Their numerical calculations covered the parameter space spanned by the two
sidewall Reynolds numbers and the aspect ratio Γ in the range |Re1,2| 6 700 and
Γ ∈ [0.2, 3.0]. Depending on the exact parameter values up to seven different non-
trivial flow states were found to exist for given values of Re1, Re2 and Γ . The stability
of these flow states, however, was not addressed by Albensoeder et al. (2001a).

The present paper is an extension of the work of Kuhlmann et al. (1997). Here
we investigate the supercritical three-dimensional cellular flow in a cavity with aspect
ratio Γ = 1.96. The experimental setup is introduced in § 2. Section 3 deals with
symmetry properties, quantitative velocity fields, and existence ranges of the steady
cellular flow. The onset to time-dependent cellular flow is treated in § 4, where we
analyse symmetries, existence boundaries, and bifurcation diagrams. The results are
summarized in § 5.

2. Experimental setup and measurement techniques
A nearly rectangular cavity is formed by four stationary plane rigid walls and

two facing sidewalls, realized as chrome-plated metal cylinders of large radii R1 =
87.55 mm and R2 = 88.25 mm. The cylinders allow a tangential wall motion by rotation
about their axes. The geometry and coordinate system are sketched in figure 1. The
same device has been employed by Kuhlmann et al. (1997). Compared to that setup
the four stationary walls have been rebuilt for better optical accessibility. The average
value of the minimum (dmin = 55.4 mm) and maximum (dmax = 57.9 mm) distances in
the x-direction between the cylinders is referred to as width d = 56.7 mm. The height
in the y-direction and the length of the cavity in the z-direction are h = 29.0 mm and
l = 190 mm, respectively. Scaling all lengths with the cavity height h the geometry
is defined by the aspect ratios in the (x, y)- (cross-sectional aspect ratio Γ ) and
(y, z)-plane (spanwise aspect ratio Λ),

Γ =
d

h
= 1.96± 0.05, Λ =

l

h
= 6.55± 0.03. (2.1)
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Figure 1. Geometry and coordinate system of the cavity.

The top and the bottom of the cavity at y = ±1/2 as well as the endwalls at z = ±Λ/2
are made of Perspex. For visualization purposes the bottom plate at y = −1/2 is
painted black.

The fluid is set into motion by independently rotating each cylinder about its
axis with a constant angular velocity. Each cylinder is driven via tooth belts by its
own computer-controlled permanent-magnet synchronous motor. The whole cavity,
including the rotating cylinders, is mounted inside an outer container and immersed
into the working fluid, which is Bayer Baysilone M20 silicone oil of kinematic viscosity
ν0 = 22.2 mm2 s−1 and density ρ0 = 0.956 g mm−3 at 20 ◦C. The temperature in the
cavity, which had a volume of ≈ 0.3 l, and in the outer bath with a capacity of ≈ 15 l
changed only slowly during the experiments, typically less than 0.05 ◦C h−1. Because
the outer bath is well stirred by the rotating cylinders, the cavity can be considered
isothermal to high accuracy. To keep the sidewall Reynolds numbers

Rei =
ΩiRih

ν
(2.2)

at constant values, the angular velocities Ωi (i = 1, 2) are periodically adjusted every
60 s to the instantaneous value of the viscosity which is determined by measuring
the temperature of the fluid by a thermocouple (PT100). The gauge curve ν(T ) was
previously measured independently, with an absolute accuracy of ∆ν = ±0.05 mm2 s−1.
The actual viscosity is calculated using an exponential fit of the measured gauge data.
The flow inside the cavity is visualized using a bright ≈ 7 mm thick halogen light
sheet and suspending particles in the liquid. Polyamide-12 particles of nearly spherical
shape were used for streakline photographs. Their density and mean diameter are
ρ = 1.016 g mm−3 and dp1 ≈ 57 µm, respectively. Fine aluminium flakes of thickness
10 to 15 µm and diameter up ≈ 150 µm have been used for observations by the
naked eye, because their non-isotropic reflectivity allows a better identification of
flow patterns than the nearly isotropically reflecting Polyamide-12 particles.

Quantitative measurements of the flow were made using two different techniques.
Steady and time-dependent flow fields were measured by laser-Doppler velocimetry
(LDV) using a Dantec velocimeter (model Flowlite), the optical system of which has
an aperture of 38 mm and a focal length of 160 mm. Again, seeding with Polyamide-
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12 particles was employed. These had the same density as those for visualization,
but a mean diameter of dp2 ≈ 5 µm which is of the order of magnitude of the
interference-fringe distance (≈ 3.8 µm). In addition, two hot-film probes (TSI model
1237) were flush mounted to the bottom wall of the cavity at xa = (0,−1/2, 0) and at
xb = (0,−1/2, Λ/8). This technique was mainly used for time-dependent oscillatory
flows, where it allows the quantitative measurement of discrete frequencies. Moreover,
the amplitudes of the oscillating shear stress on the wall as functions of the Reynolds
numbers can be determined up to a constant factor, as long as the oscillation
amplitudes are sufficiently small, i.e. as long as the output signal can be linearized
with respect to the shear-stress fluctuations.

The hot-film data were acquired using a transient recorder (Nicolet model 460).
They were analysed by fast Fourier and discrete Fourier transforms. To determine
the frequencies and amplitudes of the spectral components of the oscillating-flow
velocities measured by LDV we used a Lomb periodogram (Lomb 1976; Press et
al. 1992) based on a least-squares fitting of unevenly sampled time-series data. This
method has been employed before, e.g. by Wulf, Egbers & Rath (1999) to analyse
laser-Doppler measurements of spherical Couette flow.

During all experiments reported in the following, both cylinders were rotated in
the same sense. Hence, the cavity sidewalls move in opposite directions. All velocity
data u = (u, v, w), where u, v, and w denote the velocity components in the directions
x, y, and z, respectively (see figure 1), are made dimensionless by ν/h. As the time
scale we use h2/ν. The error of the velocity measurements is estimated to be less
than the maximum standard deviation that occurred during the LDV measurements
∆u ∼= ∆v ∼= ∆w ∼= ±1.5, in non-dimensional units.

3. Steady three-dimensional flows
The lid-driven flow in finite-length cavities is always three-dimensional, even if

the span is large. The secondary three-dimensional flow (called Ekman or Bödewadt
flow) induced by the endwalls at z = ±Λ/2 perpendicular to the axis of the main
vortex is well known (Bödewadt 1940). In many previous experiments (e.g. Koseff &
Street 1984c; Aidun et al. 1991) the spanwise aspect ratio was Λ = 3. Even though
the length is three times the cavity height, the value Λ = 3 must be considered
small, because the three-dimensional flow effects are considerable throughout the
whole cavity and may thus prevent the observation of certain bulk-flow instabilities
(Albensoeder et al. 2001b). Three-dimensional effects are also important in the present
setup with Λ = 6.55. However, the deviations from a two-dimensional flow are much
smaller in the centre of the cavity around z = 0 than for Λ = 3. A comparison
between the experimentally determined streaklines in steady flow (Λ = 6.55) and
the corresponding numerically calculated two-dimensional flow shows a very good
agreement (Kuhlmann et al. 1997).

By numerical and experimental investigations, Kuhlmann et al. (1997) have shown
that the nearly two-dimensional flow in a cavity with Γ = 1.96 and Λ = 6.55
undergoes an instability caused by the strong straining of the basic-flow streamlines.
The present work extends their results and further analyses the three-dimensional
flows beyond the first instability.

3.1. General flow characteristics when Re = Re1 = Re2

Consider the case of equal Reynolds numbers. The use of Re without a subscript
indicates that both Reynolds numbers are the same: Re = Re1 = Re2. At low
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Reynolds numbers and apart from weak three-dimensional endwall perturbations,
Kuhlmann et al. (1997) found a two-dimensional flow which they called two-vortex
flow, because it consists of two well-separated co-rotating vortices. On an increase of
the Reynolds numbers the two-vortex flow undergoes a jump transition to a different
two-dimensional flow which we shall call strongly-merged-vortex flow (Albensoeder et
al. 2001a); this was called cat’s-eye flow by Kuhlmann et al. (1997). In the strongly-
merged-vortex state for Γ = 1.96 two smaller eddies are embedded in a globally
recirculating flow. The separatrix streamline forms a hyperbolic stagnation point in
the centre of the cavity (see figure 3 of Kuhlmann et al. (1997)).

The strongly-merged-vortex flow becomes three-dimensional via a supercritical
bifurcation to a stationary flow consisting of rectangular cells. According to Kuhlmann
et al. (1997) the three-dimensional flow first appears during a quasi-steady increase
of the Reynolds numbers at Re = 260 in the form of a single rectangular cell (their
figure 9) corresponding to a wavenumber k = 2.2 in the centre of the cavity. For
Re > 280 four rectangular convection cells filling the whole cavity were observed.
It was shown that, in addition to this four-cell flow, a five-cell flow exists above
a certain Reynolds number. The boundaries between neighbouring convection cells
have been identified as planes of constant z on which the spanwise velocity component
w vanishes.

The existence of the single convection cell at Re = 260 is not observed in the present,
rebuilt experimental setup. All other flow features reported by Kuhlmann et al. (1997)
and mentioned above are confirmed by the present investigation. Visualizations of
the four- and five-cell flows by tracer-particle streaks are shown in figure 2. The
cellular flow in the centre of the cavity appears to be approximately periodic, one
period in the z-direction comprising two cells. Kuhlmann et al. (1997) have calculated
the stationary critical mode with wavenumber kc = 2π/λc = 2.25 for Λ → ∞. The
theoretical critical mode is invariant under discrete translations, z → z + nλc (n ∈ Z),
reflections at the cell boundaries, (x, y, z, u, v, w)→ (x, y,−z, u, v,−w), where the origin
of the z-axis is taken on a cell boundary such that w(x, y, z = 0) = 0, and under
half-wavelength translations z → z + (2n + 1)λc/2 combined with a rotation by π
about the z-axis (x, y, z, u, v, w) → (−x,−y, z,−u,−v, w). This leads to the invariance
of the flow under

[x, y, z + (2n+ 1)λc/4, u, v, w] −→ −[x, y, z + (2n+ 1)λc/4, u, v, w]. (3.1)

Hence, the neutral velocity field within a single cell must be point symmetric with
respect to the centre of each cell located at xn = (xn, yn, zn) = (0, 0, (2n+ 1)λc/4). Since
the full nonlinear Navier–Stokes equations in infinitely long systems (Λ → ∞) also
satisfy the same symmetry [(∇, u, p, t) → (−∇,−u, p, t)], there is no obvious reason,
other than a spontaneous symmetry breaking, why this symmetry also applies to the
nonlinear finite-amplitude three-dimensional flow in a certain range of supercritical
Reynolds numbers.

Despite the endwall effects, these symmetries are observed to high accuracy for
the finite-amplitude cells in the centre of the cavity (see e.g. figure 2). Note that
a pure rotation of the pattern by π about the z-axis, which is compatible with
the experimental boundary conditions (Re1 = Re2), leads to a different flow state.
Hence, two different, though equivalent, flows states exist for a given number of cells
(compare figures 2a, b and 2c, d).

Based on the favourable comparison between the measured and calculated stability
boundaries and three-dimensional flow structures, including the wavenumber and
the time-dependence, provided by Kuhlmann et al. (1997) we conclude that the
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Figure 2. Streaklines of tracer particles in different steady three-dimensional flows for Re = 700:
(a) four-cell V-mode, (b) four-cell Λ-mode, (c) five-cell V-mode, (d ) five-cell Λ-mode. The streaklines
have a considerable z-component near the walls at x = ±Γ/2, because the light sheet, centred at
y = 0, is relatively thick. Moreover, the spanwise velocity is high even close to the moving walls
and a tiny fraction of the full view has been clipped near the top and bottom of each figure. The
exposure time of the photographs was 1/4 s. The symbols � and ⊗ indicate the motion of the walls.
In the centre and slightly to the right from there, one can see light reflections from the hot-film
probes located at the bottom of the cavity.
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instability is due to the elliptical mechanism (Pierrehumbert 1986; Bayly 1986). The
same mechanism destabilizes Tollmien–Schlichting waves in plane channels or in
viscous boundary layers (Bayly, Orszag & Hebert 1988). In fact, the observed cellular
patterns have a similar structure to the transient Λ-vortices which develop on the
unstable Tollmien–Schlichting waves (see e.g. Herbert 1988). Therefore, the cellular
flows may be called stationary Λ-vortices. In order to distinguish between the two
possible orientations of the Λ structure relative to the laboratory frame, we shall call
the modes in figures 2a, c V-modes, while the flows shown in figures 2b, d are denoted
Λ-modes, corresponding to the orientation of the apparent vortex centres within the
two leftmost cells next to the wall at z = −Λ/2.

3.2. Four-cell flow

To investigate the bifurcation from the basic flow to the cellular flow the equilibrium
amplitudes of the cellular flow have been measured as functions of the Reynolds
numbers. To ensure that the flow is always in an equilibrium state, all experiments
were carried out under quasi-steady conditions. The Reynolds numbers were varied
in steps of ∆Rei = 1 after time lags ∆t corresponding to the momentum-diffusion
time across the relevant length scale. While for two-dimensional flows a time step of
∆t = 150 s ≈ τd = d2/ν would have sufficed, a time step of ∆t = 30 min ≈ τl = l2/ν has
been employed for cellular-flow measurements. Accordingly, the equivalent ramping
rate (here we use discrete steps) in the latter case was dRei/dt = 5.6× 10−4 s−1 which
leads to a dimensionless ramp ri = (h2/ν0) dRei/dt = 0.021.

3.2.1. Equal Reynolds numbers, Re = Re1 = Re2

The bifurcation diagram for the instability of the strongly-merged-vortex flow to
the three-dimensional four-cell flow for equal Reynolds numbers is shown in figure 3.
The data for the V-mode have been obtained by LDV measurements of w at a fixed
point in the flow during a quasi-steady increase of the Reynolds numbers. For the
Λ-mode the Reynolds numbers have been decreased quasi-steadily. The velocity data
indicate a supercritical pitchfork bifurcation.

On a quasi-steady increase of the Reynolds numbers the V-mode is always selected.
However, the Λ-mode can be realized, in the present experimental setup, by keeping
Re1 constant in the range 300 6 Re1 6 800 and increasing Re2 quasi-steadily from
zero to Re2 = Re1. For decreasing Reynolds numbers, keeping Re1 = Re2, we then
find that the Λ-mode is replaced by the V-mode at Re = 296 ± 2%. During the
transient process, the cells of the Λ-mode move slowly in the negative z-direction and
one end cell becomes squeezed. After approximately 20 minutes the end cell adjacent
to z = −Λ/2 disappears and a new cell is created at the other end of the cavity at
z = Λ/2.

Due to the endwall-induced three-dimensional flow for Λ = 6.55 the z-component
of the basic flow is not exactly zero at the monitoring point z = −0.1Λ 6= 0 in figure 3.
Therefore, the measured velocity for subcritical Re is slightly biased towards negative
values. This effect of the location of the monitoring point does not, however, explain
the premature breakdown of the Λ-mode. Since the geometry and boundary conditions
as well as the subcritical and supercritical flows including finite-span effects should
be invariant under a rotation by π about the z-axis, the bifurcating flow branches in
figure 3 should be symmetric with respect to w = 0 when the monitoring point lies
on the line x = y = 0. Therefore, the observed preference for the V-mode can only
be caused by imperfect endwall conditions (e.g. asymmetric leaks).

Apart from the observed imperfection, the bifurcation to the four-cell modes is
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Figure 3. Spanwise velocity w in units of ν/h at (x, y, z) = (−0.245Γ ,−0.252,−0.1Λ) as function of
the Reynolds number. The two supercritical branches correspond to the four-cell V- and Λ-modes
as indicated.
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Figure 4. Squared lengthwise velocity w2 in units of (ν/h)2 at (x, y, z) = (0, 0.266, 0.132Λ) as function
of the Reynolds number during a decrease of Re. The linear slope indicates a supercritical pitchfork
bifurcation at Re(1)

c = 275 for the onset of the steady three-dimensional four-cell V-mode. The
smeared data near the critical point may be due to the imperfection provided by the endwall-induced
Bödewadt flow and only partly due to the critical slowing down.

of supercritical pitchfork-type, because the cell amplitude increases almost with the
square-root of the distance from the critical point w ∝ ±(Re−Re(1)

c )1/2. This is clearly
shown in figure 4 from which a critical Reynolds number Re(1)

c = 275±2% is obtained
by linear extrapolation of w2 to zero. The range of Re within which the amplitude is
well approximated by a square-root law extends up to 25% of Re(1)

c above the critical
point.

We find that the two inner cells grow, while the two outer cells decrease in size
when the Reynolds number Re is increased. The wavenumber corresponding to both
inner cells decreases rapidly from ki = 2.16 ± 0.04 at Re = 300 to ki = 2.03 ± 0.04
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at Re = 400. For larger Re the decrease is much weaker and ki = 1.96 ± 0.04 at
Re = 800.

In order to further quantify the steady velocity fields, LDV measurements were
made in planes z = z2, where z2 denotes the z-coordinate of the centre of the second
cell from the left in figure 2(a). Since z2, as well as ki, depends slightly on Re, the
centre of the cell has been determined prior to the measurement for each Reynolds
number by locating both cell boundaries. In figure 5 the u-component of the velocity
field is shown as a function of the normalized width x/Γ (a) and height y (b) for
different Reynolds numbers. For increasing Reynolds numbers the extrema of u are
shifted towards the boundaries. Besides this effect, the measured data confirm the
point symmetry of the flow in the plane z = z2 = const. through the centre of the
cell. In particular, u(x = y = 0) = 0.

The flow symmetry and the development as Re increases is demonstrated in fig-
ure 6. In the slightly supercritical four-cell flow (V-mode) shown in figure 6(a) the
dependence u(0, 0, z) is nearly harmonic in the centre of the cavity. Only the end cells
are strongly distorted owing to the no-slip conditions at z = ±Λ/2. The z-dependence
of the strongly nonlinear four-cell flow is shown in figure 6(b). The velocity varies
very strongly in a small vicinity of the rigid endwalls and the bulk flow exhibits much
more structure. The point symmetry within the two interior cells is slightly violated
in this example, because the data were taken slightly off from the centreline.

The flow in a cross-section z = const. separates from the stationary top and bottom
walls for Reynolds numbers Re & 600. The separation of the three-dimensional flow is
evident from figure 7, showing streaklines of a four-cell flow in the plane at z ≈ Λ/8
(centre of a cell) for Re = 800. Small secondary vortices in the flow approaching
the upstream corners of the moving walls can be seen in the upper left and lower
right corners of the figure. Just before reaching the moving wall, the flow reattaches
to the rigid wall. This behaviour is similar to that in the classical square cavity,
where it occurs for Reynolds numbers above Re = 1000 (Benjamin & Denny 1979).
The flow separation also leaves its traces on the pattern of ground tracer particles
deposited on the stationary bottom wall, shown in figure 8. The streaks in the lower
part of the photograph represent the direction field of the flow in the immediate
vicinity of the solid wall at y = −1/2. In the upper part of the figure, where the
visible streaks end, the flow has separated from the bottom. Generally, both the
basic strongly-merged vortex flow and the three-dimensional cellular perturbation
flow change with Reynolds number. While the streakline projections near the centres
of the cells (figure 7) are very similar to the streamlines of the basic flow at Re = 800
(figure 3c of Kuhlmann et al. 1997), which likewise exhibits flow separation, they are
quite different near the cell boundaries (figure 13a, c of Kuhlmann et al. 1997).

3.2.2. Different Reynolds numbers, Re1 6= Re2

When Re1 6= Re2 the boundary conditions are no longer point symmetric with
respect to the centreline x = y = 0 and the flow is asymmetric from the outset. More-
over, different basic states must be considered, because the strongly-merged-vortex
flow exists only in a certain tongue-shaped region around Re1 = Re2 (Kuhlmann et al.
1997; Albensoeder et al. 2001a). Far off-axis (Re1 6= Re2) the basic state corresponds
to the steady two-dimensional two-vortex flow. This flow, however, is linearly unstable
with respect to a long-wavelength mode for increasing Re1 + Re2 (Kuhlmann et al.
1997).

While the four-cell state for Re1 = Re2 bifurcates out of the quasi-two-dimensional
strongly-merged-vortex state, the transition to the cellular states for strongly
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Figure 5. Velocity component u in units of ν/h measured by LDV within an inner cell of the
four-cell V-mode as function of x/Γ (a) and y (b). Data have been taken in the midplane
(z = z2 = const. ≈ −Λ/8) of the cell. The Reynolds numbers are indicated by symbols: Re = 300
(•), 400 (M), 500 (×), 600 (◦), 700 (∗), and 800 (N).
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Figure 6. LDV measurement of the velocity component u (in units of ν/h) as function of z near
the centreline for (a) Re = 325 and (x, y) = (0, 0) and for (b) Re = 800 and (x, y) = (0,−0.062).
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Figure 7. Cross-section through the centre of a cell in a four-cell flow at z ≈ Λ/8 for Re = 800.
Small separated vortices are visible at the top left (a) and the bottom right (b). The arrows indicate
the direction of the flow.
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Figure 8. Streaks of fine-ground tracer material (aluminium flakes) deposited on the bottom of the
cavity which has run continuously for approximately 3 months with a four-cell flow at Reynolds
numbers Re ≈ 700. The streaks on the right-hand side were produced by the end cell. The streaks
of the second cell from the right appear in the middle of the figure. On the left, one can see the
hot-film probe protruding slightly into the cavity. The upper part of the figure, free of streaks,
corresponds to the region of separated flow. The upper and lower boundaries are slightly larger
than ±0.5, since the full bottom plate of size dmax is shown, not only the range corresponding to d.
The hot-film probe at xb had not yet been built-in at the time the photograph was taken.

asymmetric driving, |Re1 − Re2| large, is more complicated. However, since the cel-
lular flow develops continuously from the diagonal Re1 = Re2 when the Reynolds-
number difference is increased, and since it can be clearly distinguished from the
three-dimensional flow arising as a result of the long-wavelength instability of the
two-vortex flow, the existence range of the cellular states can be explored by visual
inspection. The measured existence boundaries of the four-cell flow are presented in
figure 9 for Re1 + Re2 6 1400, extending the range investigated by Kuhlmann et al.
(1997) who considered Re1 + Re2 6 870.

To determine the transition boundaries, a series of experiments has been performed
during which one Reynolds number was kept constant and non-zero, while the other
was increased quasi-steadily from zero to the bisection Re1 = Re2. The parameter
paths were thus lines parallel to the Reynolds number axes. For Re2 > Re1 the
lines were parallel to the Re1-axis, and vice versa. The error in Rei for the existence
boundaries of the four-cell modes is estimated to be less than 2% of the Reynolds
number that has been kept constant.

When the cells come into existence by increasing Re1 (Re2 = const.) the four-cell
flow turned out to be of V-type, whereas it was of Λ-type when Re2 was increased and
Re1 was kept fixed. Since the V- and Λ-modes differ in the bulk only by a translation
of λ/2 in the z-direction, this mode selection is clearly due to the asymmetry of
the endwall cells when Re1 6= Re2. The pattern selected is such that the apparent
vortex cores at z = ±Λ/2 always originate near the upstream corner of the fastest
moving wall. This behaviour has also been reported by Kuhlmann et al. (1997). In
the following we discuss the sequence for Re2 = const.

Within a narrow strip |Re1 − Re2| . 75 and as long as the Reynolds number held
constant is less than ≈ 290 the increase of Re1 leads to a jump transition (+ in
figure 9, data taken from Kuhlmann et al. 1997) from the asymmetric two-vortex
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Figure 9. Transition boundaries between different flow types in the (Re1, Re2)-plane upon a
quasi-steady variation of the Reynolds numbers: 2V indicates the region of the two-vortex flow. It
becomes unstable to a three-dimensional flow (U). The line is the numerical linear stability boundary
of the two-vortex state (Kuhlmann et al. 1997). Near Re1 = Re2 the two-vortex flow changes into
the strongly-merged-vortex flow (M). Approaching Re1 = Re2 from the unstable two-vortex flow
(U) the flow first changes into the strongly-merged-vortex flow (M) at the line indicated by +
(data taken from Kuhlmann et al. 1997) and ×. The unstable two-vortex flow is steady near + and
time-dependent near ×. Moreover, the transition to the strongly-merged flow has a small hysteresis
(not shown) for +. Thereafter, the strongly-merged flow changes into the four-cell flow (C) at the
boundary indicated by • (V- or Λ-type as indicated). When the path is reversed the four-cell flow
breaks down to the unstable two-vortex flow (U) or to the strongly-merged flow (M) at the symbols◦. The diamond � indicates the parameters for figure 10.

flow (2V) to the asymmetric strongly-merged-vortex flow (M). This transition has a
small hysteresis (Kuhlmann et al. 1997). On a further increase of Re1 a supercritical
transition to a four-cell state occurs, if the curve indicated by • is crossed near its
apex.

When the Reynolds number held constant is larger than ≈ 290 the asymmetric
two-vortex flow becomes unstable first to a long-wavelength mode (U) along the line
in figure 9 (numerical data of Kuhlmann et al. 1997). We did not try to measure
this onset, because the critical wavelength λc ≈ 3.74 (Kuhlmann et al. 1997) is of the
order of magnitude of the cavity length Λ and no well-defined critical point exists
in the present finite-length apparatus. As long as the constant Reynolds number is
not too large (here: Re2 < 480) a jump transition (with a slight hysteresis) from the
three-dimensional long-wavelength state (U) occurs at (+) on an increase of Re1 to
the strongly-merged-vortex flow, which is now asymmetric, of course, with respect
to the centreline x = y = 0. A further increase of Re1 then leads to an asymmetric
four-cell flow (•).

For Re2&480, the three-dimensional long-wavelength state becomes time-dependent
for sufficiently high Re1. A further increase of Re1 then leads to a transition from this
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time-dependent flow (also denoted by U) to the steady asymmetric strongly-merged-
vortex flow (M), the transition boundary being indicated by × in figure 9. Within the
experimental accuracy this transition shows no hysteresis. The subsequent transition
from the strongly-merged-vortex flow (M) to the cellular state (•) is found to be
discontinuous and the cellular state comes into existence with a finite amplitude.

When the Reynolds-number difference is small, the three-dimensional cellular state
has a small amplitude at the threshold. In the limit Re1 = Re2 the bifurcation from
the strongly-merged-vortex state is supercritical (see e.g. figure 3). For larger Reynolds
number differences, we find a hysteresis and the bifurcation is subcritical. This can be
seen from the deviation between • and ◦ in figure 9. The latter symbols indicate the
breakdown of the four-cell pattern upon a decrease of one Reynolds number (keeping
the other one constant). For Re2 & 400, for example, the hysteresis of the transition to
and from the four-cell V-mode increases considerably with Re2 (figure 9), consistent
with Kuhlmann et al. (1997).

Owing to the strong selection of the pattern (V or Λ) by the asymmetric endwall
cells, the domain of existence of a particular pattern (e.g. V) is not symmetric with
respect to the diagonal Re1 = Re2. Here we have measured the existence range of
the preferred pattern. When the increasing Reynolds number crosses the bisection
Re1 = Re2 the previously preferred mode becomes the non-preferred one and, on a
further increase of the Reynolds number, it will suffer an earlier breakdown than the
preferred mode. We have not yet investigated the upper existence boundaries of these
non-preferred modes.

An example of the asymmetric strongly-merged-vortex flow (M) is shown in fig-
ure 10 for (Re1,Re2)=(400,600); the location in the (Re1, Re2)-plane is indicated by a
diamond (�) in figure 9. The flow consists of two primary vortices adjacent to both
moving walls embedded in a globw al recirculation. The primary vortex adjacent to
the slower moving wall (left) is much weaker than the one next to the faster moving
wall (right). Due to the weaker suction of the upstream corner of the slower moving
wall a secondary separated vortex is established in the flow approaching the upstream
corner of the slower moving wall (top left of figure 10). A comparison of the exper-
imental streaklines with the numerically calculated stream function of the asymmetric
strongly-merged-vortex flow is shown in figure 10(b). The slight difference in the
streakline patterns is attributed to three-dimensional finite-size effects for Λ = 6.55
which appear to be more significant for asymmetric driving than for Re1 = Re2.

3.3. Five-cell flow

Besides the four-cell flow, we also found a flow comprising five cells in the spanwise
direction. It is observable only within the existence range of the four-cell flows.
The five-cell flows have essentially the same properties as the four-cell flows, except
that the somewhat higher existence boundaries indicate that the flow with a shorter
wavelength corresponding to five cells is not as preferred as the four-cell flow. Even
though a five-cell flow would be the preferred state according to the neutral curve (cf.
figure 7 of Kuhlmann et al. 1997) if the cell size were homogeneous, we find that the
four-cell flow has a lower threshold. This could be a consequence of the size of the
cells adjacent to the endwalls, which are rather large in the four-cell flow. Therefore,
the effective wavenumber of the innermost cells of the four-cell flow is larger than
expected on pure geometrical grounds.

The five-cell flows could only be realized by particular initial and transient con-
ditions for the wall speeds. For instance, the five-cell V-mode was set up by in-
creasing both Reynolds numbers from rest to Re1 = Re2 = 450 by a fast linear ramp
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Figure 10. Streaklines of the strongly merged-vortex flow in the (x, y)-plane at z = 0 (a) and
numerically calculated streamlines of the two-dimensional strongly-merged-vortex flow (b) using
the code of Albensoeder et al. (2001a), both for Re1 = 400 and Re2 = 600. The arrows indicate the
direction of the lid motion.

dRe/dt ≈ 100 s−1 corresponding to a dimensionless rate ri ≈ 3788. On the other hand,
the five-cell Λ-mode was obtained from a four-cell V-flow at Re = Re1 = Re2 = 500
as follows. First, Re1 was rapidly reduced to Re1 = 330 at a rate dRe/dt ≈ −100 s−1

(r1 ≈ −3788) keeping Re2 = 500 constant. After a few seconds the four cells started
to move in the positive z-direction. As a result, the cell adjacent to the stationary
wall at z = −Λ/2 became slightly larger. By increasing Re1 again up to Re1 = 500
with dRe1/dt ≈ 100 s−1 a fifth cell was created next to the stationary end wall at
z = −Λ/2 and a persistent stationary five-cell Λ-mode was established. The difference
in the procedures to create the V- and Λ-type of flows indicates the role of even slight
imperfections in the experimental setup.

3.3.1. Equal Reynolds numbers, Re = Re1 = Re2

The dependence of the velocity component u measured by LDV at (x, y) = (0, 0.183)
for a five-cell V-mode as function of the spanwise coordinate z is shown in figure 11
for Re = 850. The structure of the three interior cells appears to be hardly influenced
by the end effects. Their size corresponds to a wavenumber k = 2.44 ± 0.05. The
above-mentioned mirror symmetry with respect to the cell boundaries at z = ±0.1Λ
is clearly visible. Likewise, the flow within each individual interior cell of the five-cell
pattern is point symmetric. The change of sign of the velocity near the cell boundaries
at z = −0.3Λ and z = 0.1Λ is due to the squeezing of the recirculating flow in the
(x, y)-plane to a thin shear layer near the top lid at y = 1/2 (see figure 13 in Kuhlmann
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Figure 11. Velocity component u in units of ν/h as function of z at (x, y) = (0, 0.183) for the five-cell
V-mode at Re = 850. The dashed line indicates the unperturbed velocity value u = −176 of the
unstable two-dimensional solution of the infinite system calculated with the code of Albensoeder et
al. (2001a). The full line is u = 0.

et al. 1997): when the measuring location z enters this region a flow reversal is seen.
In a similar way, the decrease in the amplitude at z = −0.1Λ and z = 0.3Λ can be
explained in terms of the cellular flow structure.

The cells adjacent to each rigid boundary at z/Λ = ±0.5 are only weakly disturbed.
Most notably, the amplitude (deviation from the two-dimensional-flow value, dashed
in figure 11) of the three-dimensional flow close to the stationary sidewalls is not as
high as it is near the interior cell boundaries. The size of the cells at this Reynolds
number is even less influenced: the endwall cells are only 5% larger (in the z-direction)
than the inner cells.

The spatial structure of the cellular flow has been measured on a three-dimensional
grid using LDV. Owing to the symmetry of the flow it is sufficient to show only the
upper half of a single cell. The projections of the velocity vectors of the second cell
centred at x2 = (x2, y2, z2) = (0, 0,−0.195Λ) of a five-cell V-mode at Re = 700 (see
figure 2c) onto three horizontal planes at y = 0.048 (near the centre), y = 0.242
(intermediate), and y = 0.387 (near the top wall) are shown in figure 12(a–c).

Near the midplane y ≈ 0 (figure 12a) the point symmetry of the velocity field
is visible. Closer to the upper stationary wall (figure 12b, c) the projected velocity is
directed approximately diagonally across the cell. This is consistent with the streaklines
shown in figure 2. Next to the upper wall the flow is dominated by the two-dimensional
flow components u and v, whereas w is small. An indication for the flow separation
mentioned above (figures 7 and 8) for the four-cell flow is also visible in figure 12(c).
In the lower part of this figure the fluid is strongly decelerated, after crossing the
diagonal, and the flow changes its direction from the positive to negative z-direction.

3.3.2. Different Reynolds numbers, Re1 6= Re2

When the Reynolds numbers are reduced the five-cell flows cease to exist. When the
transition point is approached the amplitude of the five-cell flow does not continuously
go to zero. Rather, it breaks down suddenly from a flow state with finite amplitude.
Therefore, their existence ranges, measured for Re1,2 6 1100, are easily detectable.
Results for the five-cell Λ-mode are shown in figure 13 where the plusses (+) indicate
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Figure 12. Projections of the steady velocity field of the five-cell flow for Re = 700 onto planes
y = 0.048 (a), y = 0.242 (b), and y = 0.387 (c). The length of the arrow in the upper right corners
specifies the velocity scale w = 100 (in units of ν/h).

the breakdown of the five-cell Λ-mode when the Reynolds number Re2 is decreased
from the diagonal Re1 = Re2 by keeping Re1 fixed, or vice versa. The squares
(�) indicate the breakdown of the five-cell V-mode. For comparison, the existence
boundaries of the four-cell modes from figure 9 are included. Because the five-cell
modes are antisymmetric with respect to z = 0, the V-mode is the mirror image of
the Λ-mode, and the existence ranges of both modes should coincide. In fact, we find
that both five-cell states break down at approximately the same Reynolds numbers,
differing at most by 4% of the Reynolds number that has been kept constant. The
systematic deviation – the V-mode (�) breaks down at slightly lower Re1 than the
Λ-mode (+) is attributed to small experimental imperfections, in particular at the
endwalls (z = ±Λ/2), because these strongly select the pattern (see § 3.2.1 above).

The breakdown curves of the five- and the four-cell patterns become very close to
each other locally and even intersect (figure 13). If Re1 > Re2 the five-cell Λ-mode,
for which most measurements have been made, undergoes a transition to a four-cell
Λ-flow for Re1 6 600. For 650 6 Re1 6 1000 the five-cell states break down to the
three-dimensional long-wavelength state mentioned above, and at higher Reynolds
numbers, 1050 6 Re1 6 1100, the transition is again to the four-cell Λ-mode.

When Re2 > Re1, the five-cell Λ-mode develops into a four-cell V-mode upon
a decrease of Re1 as long as Re2 6 450. In the range 500 6 Re2 6 750 the
five-cell Λ-mode changes to a five-cell V-mode which then decays to the three-
dimensional long-wavelength flow pattern (� in figure 13). At even higher Reynolds
numbers, Re2 > 800, the five-cell Λ-flow directly decays to the three-dimensional long-
wavelength flow, although a four-cell flow exists there, too, in a very narrow range of
Re1. On the other hand, the five-cell V-mode (�) develops into a four-cell V-mode for
Re2 6 500 on a decrease of Re1. For higher Re2 it decays to the three-dimensional
long-wavelength flow.

Finally, on a decrease of the Reynolds numbers along the diagonal Re1 = Re2, both
the five-cell Λ-mode and the five-cell V-mode break down to the four-cell V-mode
which seems to be the preferred mode in our apparatus (see figure 3) at Re = 346
and Re = 344, respectively.
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Figure 13. Existence range of the V- (�) and the Λ- (+) five-cell flows in the (Re1, Re2)-plane.
The existence boundaries agree within 4% of the maximum Reynolds number max{Re1, Re2}. Data
marked as • and ◦ indicate the existence boundaries of the four-cell V- and Λ-modes from figure 9.

4. Time-dependent three-dimensional flows
The stationary cellular flows are very robust. However, if the Reynolds numbers

are further increased in a quasi-steady manner as described in § 3.2, a secondary
instability is encountered at which the cellular flow becomes time-dependent. During
the transition to a time-dependent flow, the individual cells remain clearly distinct
and the number of cells does not change.

As long as the amplitudes of oscillation of the wall shear stress are small the
response curves of the hot-film probes can be linearized. Then the hot-film measure-
ments allow the determination of the frequency spectrum. To that end 216 data points
have been measured with a sampling rate of fs = 500 Hz for every parameter set
(Re1, Re2). The spectral components could thus be determined up to fmax = 250 Hz.
No relevant frequencies were found, however, beyond f > 10 Hz. Therefore, the
spectrum was only calculated up to fmax = 10 Hz by Fourier analysis. The crucial
condition of a small amplitude of the shear-stress oscillations is satisfied here, because
the oscillatory instability was found to be supercritical within small error bounds,
unless noted otherwise. In all cases, quantitative LDV measurements confirmed the
hot-film measurements.

For the following discussion it is useful to represent any function g(x, t) ∈
[u, v, w, p, A] which is periodic in time with period f−1

1 = 2π/ω1 as

g(x, t) =
1

2

∞∑
n=0

gn(x) ei(nω1t+ϕn) + c.c. (4.1)

Here gn denotes the real amplitudes of the spectral components of g with frequencies
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ωn = nω1 which are integer multiples of the fundamental frequency ω1. The absolute
value of the shear stress measured by a hot-film probe at xi, i ∈ {a, b}, is denoted
as A(xi, t) = ρν|∂yu(x, t)|x=xi . Since only the absolute value of the shear stress can be
measured, the sign remains undetermined. However, the steady shear-stress component
A0 is dominant. Therefore, flow fluctuations parallel to the mean flow can be analysed
exactly. This does not apply to the velocity fluctuations perpendicular to the mean
flow and the measurements must be interpreted with care.

4.1. Equal Reynolds numbers, Re = Re1 = Re2

When the Reynolds number is increased rapidly above the critical value Re(2)
c the

oscillations of the individual cells are not synchronized at first. After a certain
period of time, however, or during a quasi-steady increase of Re, the cells become
synchronized and the oscillations appear as standing waves (cf. figure 19 below) with
the same wavelength as the underlying cellular flow. Since the oscillatory flow arises
from a steady three-dimensional flow state, the linear instability mode is harmonic
in time but not harmonic in space. Near the threshold, only the spectral component
of the flow field with the fundamental frequency ω1 is of sizeable magnitude. Three
instants during one period of oscillation are shown in figure 14. For symmetrical
driving, the oscillatory flow within each cell remains point symmetric with respect to
the centre of that cell at any time. It is observed that jets approaching the moving
walls form between adjacent cells (arrows in figure 14). These jets oscillate in the
z-direction with the fundamental frequency ω1. All jets approaching the same moving
wall oscillate in phase. The jets approaching the other moving wall are out of phase by
π. It follows that the velocity component w1 of the fundamental oscillatory mode has
antinodes at the mean locations of the cell boundaries. From continuity we conclude
that the components u1 and v1 must have nodes at the cell boundaries. Therefore,
w1 is symmetric and u1 and v1 are antisymmetric with respect to the steady-state
locations of the cell boundaries. Because w1 does not vanish on the cell boundaries,
the cells undergo shape oscillations around their steady-state positions. During these
oscillations the cells change their shape and alternatingly grow and shrink in width
(z-direction). This behaviour can be seen from figure 14.

Examples of typical frequency spectra are shown in figure 15 at Re = 860. The
data have been measured by the hot-film probes at xa and xb which approximately lie
respectively on a cell centre and a cell boundary in the oscillatory four-cell V-mode.
The dominance of the fundamental f1 = 1.495 Hz in figure 15(a) indicates weakly
nonlinear oscillations. On the cell boundary (figure 15b), however, A1 is very small
compared to the amplitude of the second harmonic A2, indicating a node of A1 at
the bottom centre (x = 0) of the cell boundary. The amplitude A1 does not exactly
vanish in figure 15(b), because the actual cell boundary (determined by LDV) is
not exactly located above the (fixed) hot-film probe. This behaviour is consistent
with the symmetries of the fluctuating velocity components. The steady-state (mean)
components u0 and v0 must have a local extremum on the cell boundary (jets indicated
in figure 14), because they are symmetric with respect to it (w0 is antisymmetric).
The only non-zero fundamental-frequency component at the mean location of the
cell boundary is w1. It causes a small-amplitude oscillation in the z-direction with
frequency f1 of the local extremum of, for example, u. For such a total-flow oscillation,
the fundamental frequency f1 cannot be measured at the mean location of the cell
boundary, merely the second harmonic u2 with frequency f2 = 2f1 and, of course,
w1 can be measured there. The frequency of the shear stress due to w1 measured by
the hot-film probe, however, is f2, since only the absolute value can be measured and
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Figure 14. Visualization with aluminium flakes of the oscillatory five-cell Λ-flow at y = 0 for
Re = 900 at three instants during one period T of oscillation: t = 0 (a), t = 4T/15 (b), and
t = 8T/15 (c). Note the slight changes in shape and width (in the z-direction) of the interior cells.
The arrows indicate the locations of the jets approaching the moving walls. The jets approaching
the lower moving wall in the figure are harder to see than those approaching the upper moving
wall, because of the non-isotropic visualization with aluminium flakes. The direction of wall motion
is indicated by � and ⊗.

w1 fluctuates around zero. Moreover, the amplitude u2 is quadratically small there
(compared to the components u1, v1 and w1).

Both LDV and hot-film measurements confirm that the oscillatory instability is
supercritical and of tricritical type, i.e. the amplitude of the fundamental Fourier
component f1 increases with the fourth root of the distance from the critical point.
The term tricritical was introduced for non-equilibrium phenomena by Steinberg
& Brand (1984) who took the name from the tricritical point in phase transitions.
The tricritical character of the bifurcation is demonstrated in figure 16 where the
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Figure 15. Shear-stress frequency spectra of the four-cell V-mode at Re = 860. Data were obtained
by hot-film probes flush mounted to the bottom plate at xb = (0,−1/2, Λ/8) near a cell centre (a)
and at xa = (0,−1/2, 0) near a cell boundary (b). The motor frequencies are denoted fM . Note the
different scales of the shear-stress amplitudes A which are plotted in arbitrary units.

fourth power of the fundamental shear-stress amplitude is plotted as a function
of the Reynolds number. The intersection point of the linear extrapolation with
the Reynolds-number axis yields Re(2)

c = 825 ± 1.5% for both the V- and the Λ-
modes. The dependence of the dimensionless oscillation frequency on Re is shown in
figure 17. The critical frequency is fc = 1.437 Hz corresponding to a dimensionless
value Fc = fch

2/ν = 62.0. The frequency increases slightly on an increase of the
Reynolds number. Up to Re = 1200 no incommensurate frequencies were found.

The time-dependent bifurcations of the five-cell flows are qualitatively the same as
those of the four-cell flows. Both steady five-cell flows become unstable at Re(2)

c =
875±1.5%. The dependence of the amplitude of the fundamental Fourier component
u1, measured by LDV, on the Reynolds number is shown in figure 18. In the particular
experimental run shown, the flow bifurcates at Re(2)

c = 880. The linear dependence
of u4

1 on ε = (Re − Re(2)
c )/Re(2)

c up to Re = 950 confirms the tricritical character of
the instability. The dimensionless frequency at onset is Fc = 62.0, as for the four-cell
flows.

The amplitudes of u1 have been measured by LDV for Re = 880 in a five-cell
V-mode about 1% above the critical Reynolds number for the onset of oscillation
(Re(2)

c = 872). The dimensionless fundamental frequency is F1 = 61.6± 0.1. The data
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Figure 16. Fourth power of the shear-stress amplitude A1 (arbitrary units) measured by the hot-film
probe in a four-cell V-flow at xb = (0,−1/2, Λ/8) (middle of a cell) as function of the Reynolds

number Re. The critical Reynolds number is Re(2)
c = 821. The line is a least-squares fit.
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Figure 17. Fundamental frequency F1 of the oscillatory four-cell V-mode in units of ν/h2 as a func-
tion of the Reynolds number. The data were obtained by the hot-film probe at xb = (0,−1/2, Λ/8).
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Figure 18. Fourth power of u1 (in units of ν/h) measured by LDV at x = (0, 1/4, 0) (above the
centre of the middle cell) in a five-cell V-flow as function of the Reynolds number Re.
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Figure 19. (a) LDV measurements of the amplitude u1 in units of ν/h as function of the spanwise
coordinate z for Re = 880 (ε = 0.01, F1 = 61.6 ± 0.1) at (x, y) = (0, 1/4) for a five-cell V-mode.
(b) Sketch of the standing wave of u1 corresponding to (a). The two instants of maximum absolute
velocity are shown.

were taken at (x, y) = (0, 1/4) using spanwise steps of ∆z = 2 mm corresponding to
∆z/Λ ≈ 0.01. Figure 19(a) shows u1(0, 1/4, z) as function of z. The component u1 has
nodes at the boundaries of the cells at z/Λ = ±0.31± 0.006 and z/Λ = ±0.1± 0.006,
as well as on the stationary sidewalls (z/Λ = ±1/2). The vertical dashed lines in
figure 19(a) indicate the steady-state locations of the cell boundaries at which the
phase of u1 jumps by π (standing wave) as sketched in figure 19(b). The z-dependence
of the underlying steady-state cellular flow is clearly reflected by the strong non-
harmonic character in z of the amplitude u1. Since the data were not taken on the
centreline x = y = 0, the oscillation amplitudes u1 are not symmetrical in z with
respect to the centres of the cells zn, n ∈ [1, 2, 3, 4, 5]. The oscillatory amplitude u1

is large near z/Λ ≈ −0.31 and z/Λ ≈ 0.1, because the measuring locations are in a
region where the basic flow exhibits high gradients |∂yu| (see figure 13 of Kuhlmann
et al. 1997) and in which small fluctuations of v result in large fluctuations of u.
The strong vertical (y) gradient of u at z/Λ = −0.3 is also visible in figures 12(a–c)
where the steady velocity field of the same flow type (five-cell Λ-type) is shown: the
velocity u at the left-hand cell boundary changes its sign (strong shearing) as function
of y. Conversely, the measuring locations near z/Λ ≈ −0.1 and z/Λ ≈ 0.31 in
figure 19(a) are in a region of weak basic-state flow gradients. Hence, the oscillations
are comparatively weak there.

4.2. Different Reynolds numbers: Re1 6= Re2

The critical point Re(2)
c = Re

(2)
1,c = Re

(2)
2,c extends to a critical curve for the onset of

oscillation in the (Re1, Re2)-plane. For an investigation of the bifurcation to oscillations
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Figure 20. Shear-stress amplitudes of oscillation A1 (arbitrary units) of the fundamental frequency
f1 of a four-cell Λ-mode measured by the hot-film probe at xa = (0,−1/2, 0) for Re1 = 900 as
function of Re2 during an increase (•) and during a decrease (◦) of Re2. The solid curve is a
fit A1 ∼ √ε yielding the bifurcation point (Re1,c, Re2,c) = (900, 533.5). Note that the measurement
location does not correspond to the exact position of the cell boundary between the two innermost
cells. Since the the maximum Fourier amplitude in the range 1.40 6 f[Hz] 6 1.45 has been plotted,
the (positive) subcritical data points represent a measure of the noise level.

for Re1 6= Re2, the oscillating amplitudes can be measured along any straight line
crossing the critical curve. Note that the exponent of the asymptotic power law (for
(Re1, Re2) → (Re(2)

1,c, Re
(2)
2,c)) for the dependence of the amplitude on the distance from

the critical point does not depend on the angle under which the critical curve is
crossed. A tricritical bifurcation, however, is only found at the point Re(2)

1,c = Re
(2)
2,c on

the diagonal.
As an example of an off-diagonal bifurcation, we show in figure 20 the amplitude

of the fundamental shear-stress component A1 as a function of Re2, keeping Re1

constant at Re1 = 900. Every data point was measured after having increased (•) or
decreased (◦) the Reynolds number Re2 by ∆Re2 = 1 and waiting for 30 minutes,
roughly corresponding to the momentum diffusion time τl in the spanwise direction.
The error in the amplitude is estimated to be less than 5%, except extremely close
to the threshold. The critical point is (Re1, Re2) = (900, 533.5). Since the z-location
of the cell boundary differs slightly from the z-location of the hot-film probe, and
owing to the large slope (with respect to z) of the fundamental Fourier component
at the cell boundary (see figure 19), a small-amplitude signal A1 can be measured,
even though it must vanish exactly on the cell boundary (w1 does not contribute
to A1 on a cell boundary). From figure 20 we find a dependence A1 ∼ ε1/2, where
ε = (Re2−Re(2)

2,c)/Re
(2)
2,c. The solid curve in figure 20 is a fit A1 = βε1/2 with β = 0.2665.

The critical curves for the onset of time-dependence in the four-cell and five-cell
flows are shown in figure 21. For completeness the figure also shows the existence
ranges of the steady cellular flows. The critical Reynolds numbers were determined
in a similar way as the existence ranges of the stationary cellular flows by keeping
one Reynolds number constant and varying the other one. More specifically, for
the four-cell flow Re1 was varied for constant Re2 ∈ [550, 820] (Re1 > Re2) and for
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Figure 21. Critical curves for the onset of the time-dependent four- (×) and five-cell flows (4) and
existence ranges of the steady four- (◦,•) and five-cell flows (+) as in figure 13.

Re2 ∈ [852, 1000] (Re1 < Re2). The remaining points and those for the five-cell flows
were determined in a similar way. We found that the critical curves for the V- and
Λ-modes coincide for both four- and five-cell flows with an error less than 3% of the
largest of the two critical Reynolds numbers.

Close to the parameter region where the onset curve for time-dependent four-cell
flow (×) intersects the onset curve for the steady four-cell flow (•) (560 6 Rej 6 650),
we observed that the oscillation amplitude, on an increase of Rei (i 6= j), jumps
from zero in the steady four-cell flow to a finite value at the critical point, the
oscillatory amplitude remaining nearly independent of Rei near the bifurcation point.
By decreasing Rei again, the time-dependent flow jumps back (within the error bounds
of the critical values) at the same critical point to the steady four-cell flow, without
hysteresis. The origin of this behaviour is as yet unknown.

5. Summary and concluding remarks
Steady and time-dependent flows in a two-sided lid-driven cavity with cross-

sectional aspect ratio Γ = 1.96 have been investigated experimentally. The two
steady and well-separated vortices that exist for low Reynolds numbers merge to
a highly strained vortex when both sidewall Reynolds numbers are simultaneously
increased from zero. For Re slightly larger than this quasi-two-dimensional transition
Reynolds number the strained vortex undergoes a bifurcation to a steady cellular
flow, caused by the elliptic instability mechanism. The bifurcation to steady cells is a
standard supercritical pitchfork bifurcation. In the present experiment with spanwise
aspect ratio Λ = 6.55 the supercritical flow consists of four cells corresponding to two
wavelengths. Five-cell flows were also accessible by particular transient conditions. A
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flow with six cells in the spanwise direction has been observed, but no qualitative and
quantitative investigations were carried out.

For equal Reynolds numbers the flow within each single cell (apart from those
next to the endwalls) is point symmetric, to a good approximation, with respect to
the centre of the cell. On a further increase of the Reynolds numbers standing waves
set in. They have the same fundamental wavenumber as the steady cellular flow and
the oscillatory flow is also point symmetric, at any instant of time, with respect to
the centre of each cell. The oscillatory flow bifurcates from the steady cells via a
tricritical bifurcation for which the amplitude of oscillation increases with the fourth
root of the distance from the critical point. Up to Re = 1200 no evidence for further
incommensurate frequencies was found.

When both Reynolds numbers differ from each other the point symmetry of
the cellular flow is lost, yet the steady cells remain rectangular. The bifurcation to
oscillations, however, is no longer tricritical and the oscillation amplitude of the
fundamental Fourier component increases with the square root of the distance from
the critical point. The Reynolds number ranges for which cellular flows exist have
been measured in the (Re1, Re2)-plane for both four-cell and five-cell flows. Moreover,
the transition boundaries to the oscillatory flow states have been measured. All cellular
flow states were found to exist in the neighbourhood of the diagonal Re1 = Re2.

Quantitative velocity and oscillation-amplitude profiles have been measured by
LDV. These measurements confirm that the symmetries of the fully nonlinear cells for
Re1 = Re2 are the same as those of the linear critical mode (Kuhlmann et al. 1997).
Among these symmetries the point symmetry is preserved by the nonlinear oscillatory
cells. Experimental imperfections (asymmetries) near the endwalls, however, led to a
slightly disconnected bifurcation to cells for symmetrical driving (Re1 = Re2) in the
present setup. The same imperfections are also responsible for small differences in the
existence ranges of the steady Λ- and V-modes.

The steady elliptic instability in the two-sided lid-driven cavity is a result of
the high strain in the basic (strongly merged) vortex flow (Kuhlmann et al. 1997).
Considering a Rankine vortex in a multipolar strain field Eloy & Le Dizès (2001)
have shown that this type of instability is a generic feature of strained vortices and
the result of a triad resonance among Kelvin waves. Only little is known, however,
about the secondary instabilities of steady three-dimensional strained vortices, i.e. the
transition to time-dependence. Experiments by Eloy, Le Gal & Le Dizès (2000) have
demonstrated that the stationary three-dimensional flow in an elliptically deformed
rotating cylinder becomes unstable at higher Reynolds numbers to standing-wave
oscillations. This is different from the earlier observations of Malkus (1989), but
similar to the scenario in the present experiment. As was shown numerically by Mason
& Kerswell (1999), the secondary instability of the steady and weakly nonlinear three-
dimensional flow in elliptically deformed rotating cylinders can be caused by a time-
dependent eigenmode of the basic elliptical flow. In the present experiments, however,
the three-dimensional steady flow is strongly nonlinear and differs substantially from
the basic two-dimensional flow when becoming time-dependent. This suggests that
an explanation of the flow oscillations must be based on the full three-dimensional
steady rather than on the unstable two-dimensional flow. It is an open question,
moreover, if the transition to oscillations in the elliptical cylinder (Eloy et al. 2000)
is of tricritical type, as in the cavity flow. For these reasons, full three-dimensional
numerical simulations, including a detailed analysis of the spectral components of the
oscillatory flow, would be beneficial to clarify the physical mechanism responsible for
the transition to time-dependence.
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